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The “left-behind” phenomenon occurs frequently in Urban Rail Transit (URT) networks with booming travel demand, especially
during peak hours in a complex URT network, which makes passenger travel patterns more complicated. This paper proposes a
methodology to mine passenger travel patterns based on fare transaction records from automatic fare collection (AFC) systems
and Automatic Vehicle Location (AVL) data from Communication Based Train Control (CBTC) Systems or tracking systems.
By introducing the concept of a sequence, a space-time-sequence trajectory model is proposed to simulate a passenger’s travel
activities, including when they are left-behind. The paper analyzes passenger travel trajectory links and estimates the weight of
each feasible trajectory under tap-in/tap-out constraints.The station time parameters, including access/egress and transfer walking-
time parameters, are important inputs for the model. The paper also presents a maximum-likelihood approach to estimate these
parameters from AFC transaction data and AVL data. The methodology is applied to a case study using AFC and AVL data from
the Beijing URT network during peak hours to test the proposed model and algorithm. The estimation results are consistent with
the results obtained from the authorities, and this finding verifies the feasibility of our approach.

1. Introduction

During the last decade, Urban Rail Transit (URT) in Main-
land China has developed from a total system length of only
763 kilometers ten years ago to 5033 kilometers by the end
of 2017 [1]. With the rapid development of the URT network,
travel demand has also experienced a booming increase. In
the past 10 years, the average daily passenger traffic of the
Beijing URT system has increased from 1.92 million in 2007
to 10.35 million in 2017, an increase of 439% [2]. The Mass
Transit Railway system (MTR) in Hong Kong has increased
approximately 131.6% in patronage since 2006 [3].

The significant increase in travel demand has resulted
in congestion and overcrowding both in stations and in
train vehicles; this has become a serious problem for URT
operators to address, particularly during peak hours. On one
hand, congestion brings security risks. On the other hand,
congestion and overcrowding reduce the attractiveness of the
URT network, and some passengers will choose other modes
of transportation. Additionally, a new phenomenon appears

that we term “left-behind”; some passengers fail to board
the first departing train after their arrival at a platform and
must wait for a later one. This occurs mainly because the
travel demand exceeds the network supply during a given
operational time interval due to train vehicle capacity.

To address the above problems, numerous methods
have been proposed and adopted from both the operator’s
perspective and the passenger’s perspective. Guan (2013) [4]
and Yu et al. (2015) [5] developed a model for network design
with the objective of minimizing the number of transfers.
Niu and Zhou [6] presented a methodology to optimize the
timetable to minimize waiting time under time-dependent
travel demands and oversaturation. They analyzed the char-
acteristics of passenger flow and formulated a model to
minimize passengers’ waiting times or minimize the number
of transfers. To better grasp the distribution of URT network
passenger flow, methodologies to study passengers’ travel
patterns have been developed. These facilitate a number of
applications, including (i) analysis of passengers’ path-choice
preferences, such as minimum time and minimum number
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of transfers, (ii) prediction of individual passengers’ locations
and the future distribution of URT network passenger flow,
(iii) optimizing train scheduling both from the subway line
level by identifying the most congested stations and sections
and from the network level by identifying the transfer
hot-spots, and (iv) guiding passengers to avoid congested
sections as much as possible by informing route suggestions,
congestion levels, etc.

Thus, this paper attempts to mine passenger travel pat-
terns based on automatic fare collection (AFC) transaction
data and Automatic Vehicle Location (AVL) data. It builds
on our prior work on the problem [7] and reconstructs a pas-
senger’s trajectory by introducing the concept of a sequence
to describe left-behind. The prior work ignored train vehicle
capacity constraints and assumed that all passengers left a
platform for another subway station by the first departing
train after their arrival at the platform. We propose the
concept of sequence to describe the relationships between
passenger’s arrival and departure of trains. By separating time
periods into segments according to stations, train directions,
and the departure times of trains passing stations, this paper
reconstructs a passenger’s trajectory and proposes a space-
time-sequence trajectory model. The model generates a set
of feasible space-time-sequence trajectories that indicate a
passenger’s precise travel patterns and the expected number
of times a passenger is left-behind on a platform. Then, a
methodology is presented to estimate the number of left-
behinds and the probability of each trajectory based on
the distribution of station access/egress walking time and
transfer walking time. These distributions can be obtained
from manual surveys. However, these require substantial
labor. The paper presents a maximum-likelihood estimation
methodology based on passengers’ trajectories.

The main contributions of this study include the follow-
ing:

(i) A space-time-sequence trajectory model to simulate a
passenger’s travel itinerary in a congested URT system. The
model introduces the concept of sequence and provides a
means to indicate the left-behind phenomenon.

(ii) A maximum-likelihood estimation methodology
based on AFC and AVL data that estimates passenger’s
travel patterns. More automatic data instead of empirical
data or manual survey data is used in the methodology; this
minimizes the occasional deviation caused by human factors.
Additionally, it reduces the difficulty of obtaining data.

(iii) A data-driven method to estimate station walking-
time parameters and the expected number of times pas-
sengers are left-behind. Station walking-time parameters,
including access walking time and egress walking time, are
the basic parameters for a station. They are usually obtained
by manual survey or observation; however, these require
excessive labor and cost. The method proposed in this paper
estimates these parameters using statisticalmethods based on
passengers’ space-time-sequence trajectories.

The remainder of this study is organized as follows.
Section 2 reviews relevant studies in the literature. Section 3
introduces themain idea ofmining passengers’ travel patterns
and illustrates an example. Section 4 describes the model,

followed by the introduction of the solution algorithm in Sec-
tion 5. Section 6 presents a numerical experiment on a real-
world network. The final section provides our conclusions
and suggestions for future research directions.

2. Literature Review

Many scholars and researchers have studied URT network
passenger travel patterns during the last decades. At the
beginning of these studies, it was generally not possible to
obtain bulk data, including passengers’ tap-in/tap-out infor-
mation and actual trainmovement data. Because of the lack of
data, numerous methods were proposed at macroscale level.
These methodologies mainly analyzed passengers’ travel pat-
terns from a network-flow perspective.They generated sets of
feasible paths for each origin-destination (OD) and assigned
passenger flows to each path following specific principles.
The three most well-known principles are the all-or-nothing
principle, the stochastic-assignment principle [8–12], and the
user-equilibrium-assignment principle [13–18].

With the wide adoption of AFC systems and rapid
development of train tracking systems such as the Com-
munication Based Train Control (CBTC) System, massive
detailed data was collected and saved to databases. Most
AFC systems record passenger tap-in/tap-out information
accurately except for some cases such as the New York
City Transit Authority (NYCT) system, in which exit swipe
information is not recorded.The Automatic Vehicle Location
(AVL) system records train arrival and departure times at sta-
tions accurately and in detail. With bulk data collected daily
automatically and continuously, some novel methodologies
for transit performance [19–21] and management [6, 22, 23]
have been developed.

Dai (2015) [22] presented amultimodal evacuationmodel
for metro disruptions based on AFC data in Shanghai, China.
Using AFC data of stations in urban areas of Hong Kong,
Wang (2015) [21] developed a methodology to analyze metro
trip patterns at an aggregate level. Kusakabe and Asakura
(2014) [24] estimated passengers’ behavioral attributes of
trips with a data fusion methodology using smart cards.
They observed and compared continuous long-term changes
in passengers’ trips as well as personal trip survey data
and constructed a Bayes probabilistic model to estimate
the purposes of passengers’ trips. Jin (2015) [19] evaluated
transit service performance by developing a data-mining
logic methodology based on transit smart-card data.

Some scholars and researchers have analyzed network
passenger flow at the individual level. Some have proposed
a specific trajectory model to simulate a passenger’s trip
activities and estimated the maximum-likelihood path based
on tap-in/tap-out constraints; numerous assumptions are
embedded into stages of the models’ building process. Poon
M.H. (2004) [25] assumed that all passengers have full
predictive information about present and future network
conditions. Chen (2018) [7] assumed that all passengers can
always board the first train arriving. Some additional input
parameters are needed and have a significant impact on the
accuracy of the estimation result.
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Sun (2016) [26] presented a schedule-based passenger’s
path-choice estimation model for a multioperator rail tran-
sit network using automatic fare collection data. In this
paper, a Train Schedule Connection Network (TSCN) was
constructed, and the estimated passenger path-choice was
converted to the problem of generating a feasible set of
network paths. The Fail-to-Board (FtB) phenomenon was
modeled and the weight of each path could be calculated
based on the set of feasible paths. The accuracy of the result
was highly dependent on inputs, such as FtB parameters.
However, these parameters cannot be obtained directly and
are not easy to calculate.

Poon M. H. et al. (2004) [25] present a schedule-based
transit model to solve passenger assignments for a congested
network. They assumed that all passengers have full predic-
tive information about present and future network conditions
and always travel by the minimum-cost path. However, it is
not possible for passengers to be informed of full information
about network conditions. Furthermore, the minimum-cost
path is time-dependent. Frequent URT passengers have their
respective perceptions for choosing paths, gaining experience
day by day. Additionally, the tap-out times are not taken into
account when loading network flow.

Timon Stasko (2015) [20] analyzed passengers’ ridership
at the train level using actual train movement data. He built
a customized network representation by estimating train
movements and developing an origin-destination table. The
methodology formulates a trip trajectory with 10 types of
arcs. It assigns passengers to trains using a Frank-Wolfe
approach, with customizations designed for transit. However,
it is unnecessary to infer a destination for most of the
URT network. Finally, the accuracy of the result is highly
dependent on boarding penalties.

3. Problem Description

Time and space are two important attributes of passenger
travel. Although AFC systems record passenger transaction
information in detail, including precise transaction times
and locations when the passenger swipes his/her smart
card, detailed information on a passenger’s itinerary is not
included. This section describes methods for estimating a
passenger’s detailed travel information in both time and
space.

Space-time models attempt to integrate travellers’ time-
dependent movements/trajectories with the transportation
network and are widely used in transportation geography
modeling literature. A space-time trajectory indicates a pas-
senger’s movements among activity locations with respect
to time, providing a useful means to describe both the
spatial and temporal aspects of a passenger’s travel status.
However, the key focus of this paper, the number of left-
behinds due to crowding, cannot be obtained directly from
a specific space-time trajectory. To estimate the number of
times passengers are left-behind, a parameter defined as a
sequence is introduced, and a passenger space-time-sequence
trajectory model is developed.

The time duration of the study is segmented into a set of
successive intervals based on trains’ departure times, stations,
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Figure 1: URT network topology.

and directions, such as upward and downward directions. For
example, there are a total of 55 trains passing a station in
the upward direction between 7:00 AM and 9:00 AM, and
the first/last train’s departure time is 07:02:30/08:59:00. Thus,
the time period is segmented into 56 successive intervals in
the upward direction; the sequence number of the first time
interval from 07:00:00 to 07:02:30 should be 1. The sequence
number of the last time interval from 08:59:00 to 09:00:00
should be 56.The sequence numbers of these intervals should
also be successive and the sequence number of any time
interval should be smaller than that of any later time interval.

Assume that there is a passenger travelling from Station
A to Station G through the URT system shown in Figure 1
during peak hours.

Obviously, there are three feasible spatial routes for this
trip: (i) A 󳨀→ B 󳨀→ C 󳨀→ E 󳨀→ G; (ii) A 󳨀→ B 󳨀→ F󳨀→ G; (iii) A 󳨀→ B 󳨀→ D 󳨀→ E 󳨀→ G. The passenger
transfers at Station B if travelling by route (i) or (ii), whereas
he/she transfers at Station E if travelling by route (iii). For
this journey, the passenger needs to experience the following
activities: (i) moving from the entry gate to the platform, (ii)
waiting at platforms of both the origin and transfer stations,
(iii) transfer from Line 4 to Line 2, (iv) egress from platform
to exit gate, and (v) on-train. The passenger may be left-
behind and unable to board the first-arriving train to leave
the platform at both the origin station and the transfer station
during peak periods because of crowding on the platforms
and in the train vehicles. Figure 2 illustrates the theoretically
feasible space-time-sequence trajectories from Station A to
Station G under tap-in/tap-out constraints.

As shown in Figure 2, the concept of an ideal boarding
node is proposed to distinguish platform waiting from left-
behind. An ideal boarding node represents a passenger’s
theoretically earliest boarding activity; i.e., it represents the
passenger boarding the first departure train after his/her
arrival at a platform. The arc linking the entry space-time-
sequence node and ideal boarding node indicates that a
passengermoves from the entry gate to the platformandwaits
until the first train leaves after his/her arrival.
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Figure 2: Feasible space-time-sequence trajectories.
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Figure 2 presents three feasible space-time-sequence
trajectories with given tap-in/tap-out constraints. This paper
attempts to estimate the maximum-likelihood trajectory to
mining passengers’ travel patterns. Then, the problem of
estimating the passenger’s travel patterns can be converted
into problems of generating feasible space-time-sequence
trajectories and weight assignments.

4. Methodology

The key question in estimating a passenger’s maximum
space-time-sequence trajectory is how to generate a set of
effective trajectories with entry and exit constraints and
calculate their weights. Given AFC and AVL data, this sec-
tion constructs a passenger’s space-time-sequence trajectory-
estimation model to maximize the weight of a chosen path.
Tables 1 and 2 define the related notations and estimation
variables used in the mathematical formulations.

4.1. Precise Estimation Model for a Passenger’s Space-Time-
Sequence Trajectory. Within a closed URT system, an
itinerary begins with passing an entry gate and ends with
swiping a smart card at an exit gate. The proposed model
attempts to mine more detailed travel information about a
passenger’s travel using the tap-in and tap-out record. This
paper addresses only regular passengers whose travels consist
of some or all of the five activities present in Section 3. Some
special circumstances such as a passenger forgetting to alight
are not considered.

Considering that passengers are independent individu-
als, it is reasonable to assume that passengers’ maximum-
likelihood space-time-sequence trajectories are mutually
independent. Furthermore, each passenger’s walking activity
and the trains running on different subway lines are indepen-
dent from each other. Thus, the weight of each space-time-
sequence trajectory is the product of probabilities of all space-
time-sequence arcs passed by a passenger and the objective
function is represented as follows.

max 𝑧 = ∏
𝑝∈𝑃

∏
(𝑖,𝑗,𝑡,𝑡󸀠,𝑘,𝑘󸀠)∈𝐸

(𝑝𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

)𝑦𝑗,𝑡󸀠 ,𝑘󸀠𝑖,𝑡,𝑘,𝑝 (1)

subject to the following.

Space-Time-Sequence Flow Balance Constraints. If space-
time-sequence node (𝑖, 𝑡, 𝑘) is an entry node, then

∑
(𝑗,𝑡󸀠 ,𝑘󸀠)∈V

𝑦𝑗,𝑡󸀠,𝑘󸀠
𝑖,𝑡,𝑘,𝑝

− ∑
(𝑗,𝑡󸀠 ,𝑘󸀠)∈V

𝑦𝑖,𝑡,𝑘
𝑗,𝑡󸀠 ,𝑘󸀠 ,𝑝

= 1 (2)

If it is an exit node, then

∑
(𝑗,𝑡󸀠 ,𝑘󸀠)∈V

𝑦𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘,𝑝

− ∑
(𝑗,𝑡󸀠 ,𝑘󸀠)∈V

𝑦𝑖,𝑡,𝑘
𝑗,𝑡󸀠 ,𝑘󸀠 ,𝑝

= −1 (3)

If (𝑖, 𝑡, 𝑘) is an intermediate node, then

∑
(𝑗,𝑡󸀠 ,𝑘󸀠)∈V

𝑦𝑗,𝑡󸀠,𝑘󸀠
𝑖,𝑡,𝑘,𝑝

− ∑
(𝑗,𝑡󸀠 ,𝑘󸀠)∈V

𝑦𝑖,𝑡,𝑘
𝑗,𝑡󸀠 ,𝑘󸀠 ,𝑝

= 0 (4)

Table 1: Notations and input parameters.

Symbol Definitions
S Set of URT stations
N Set of spatial nodes
NP Set of platform spatial nodes, NP ⊂ N

C Set of spatial connections, including
sections and transfer links

E Set of space-time-sequence arcs
EW Set of walking space-time-sequence arcs

EL Set of left-behind space-time-sequence
arcs

V Set of space-time-sequence nodes
T Set of activity times
P Set of passengers

𝑠, 𝑠󸀠 Index of urban railway transit stations,
𝑠, 𝑠󸀠 ∈ S

L𝑖 Set of trains passing platform 𝑖, 𝑖 ∈ NP

L𝑖(𝑘) The 𝑘th train passing platform 𝑖, 𝑖 ∈ NP

𝑝 Index of passenger, 𝑝 ∈ P
𝑖, 𝑗 Index of spatial nodes, 𝑖, 𝑗 ∈ N
𝑡, 𝑡󸀠 Index of time stamp, 𝑡, 𝑡󸀠 ∈ T

ℎ𝑡𝑠
Interval time at station 𝑠 at time
𝑡, 𝑠 ∈ S, 𝑡 ∈ T

𝑠𝑖
The station to which node 𝑖 belongs,
𝑖 ∈ N, s ∈ S(𝑖, 𝑗) Index of spatial connection, (𝑖, 𝑗) ∈ C(𝑖, 𝑡, 𝑘) , (𝑗, 𝑡󸀠, 𝑘󸀠) Index of space-time-sequence node,(𝑖, 𝑡, 𝑘), (𝑗, 𝑡󸀠, 𝑘) ∈ V

(𝑖, 𝑗, 𝑡, 𝑡󸀠, 𝑘, 𝑘󸀠) Index of space-time-sequence arc
indicating departing 𝑖 at 𝑡 during 𝑘 time
interval and arriving at 𝑗 at 𝑡󸀠 during 𝑘󸀠
time interval, (𝑖, 𝑗, 𝑡, 𝑡󸀠, 𝑘, 𝑘󸀠) ∈ E

𝑓
𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘

The distribution of the time cost of
space-time-sequence arc (𝑖, 𝑗, 𝑡, 𝑡󸀠, 𝑘, 𝑘󸀠)

𝜇
𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘

Themean of the time cost of
space-time-sequence arc (𝑖, 𝑗, 𝑡, 𝑡󸀠, 𝑘, 𝑘󸀠)

𝜎
𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘

The variance of the time cost of
space-time-sequence arc (𝑖, 𝑗, 𝑡, 𝑡󸀠, 𝑘, 𝑘󸀠)

𝑝
𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘

The probability that a passenger leaves
node 𝑖 at 𝑡 and arrives at node 𝑗 at 𝑡󸀠

𝑐
𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘

The time that a passenger should spend
on (𝑖, 𝑗, 𝑡, 𝑡󸀠, 𝑘, 𝑘󸀠)

𝑙
𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘

The number of times passengers who
travel by (𝑖, 𝑗, 𝑡, 𝑡󸀠, 𝑘, 𝑘󸀠) are left-behind

𝑡𝑎𝑖,𝑘, 𝑡𝑑𝑖,𝑘 The arrival and departure times at
platform 𝑖 of the 𝑘th train, 𝑖 ∈ NP

𝜀 The upper error limit of function value
𝐼𝑖,𝑘 The 𝑘 interval time of platform 𝑖, 𝑖 ∈ NP

Constraints (2)-(4) ensure flow balance at the network
entry, exit and intermediate space-time-sequence nodes,
respectively.

On-Train Constraints. If (𝑖, 𝑗, 𝑡, 𝑡󸀠, 𝑘, 𝑘󸀠) indicates on-train
activity, the train at the start point should be the same as that
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Table 2: Estimation variables.

Variable Definition
𝜇𝑎𝑠 Themean of access walking time at station 𝑠, 𝑠 ∈ S.
𝜎𝑎𝑠 The variance of access walking time at station 𝑠, 𝑠 ∈ S.
𝜇𝑒𝑠 Themean of egress walking time at station 𝑠, 𝑠 ∈ S.
𝜎𝑒𝑠 The variance of egress walking time at station 𝑠, 𝑠 ∈ S.

𝜇𝑐𝑠,𝑠󸀠
Themean time consumed transferring from 𝑠 to
𝑠󸀠, 𝑠, 𝑠󸀠 ∈ S.

𝜎𝑐𝑠,𝑠󸀠
The variance of time consumed transferring from 𝑠 to
𝑠󸀠, 𝑠, 𝑠󸀠 ∈ S.

𝜇𝑤𝑠
Themean of platform waiting time at station 𝑠 during
off-peak hours, 𝑠 ∈ S.

𝜎𝑤𝑠
The variance of platform waiting time at station 𝑠
during off-peak hours, 𝑠 ∈ S.

𝜇𝑖,𝑗
Themean number of times passengers are left-behind
on platform 𝑖.

𝑦
𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘,𝑝

0-1 binary variables: 1 if trajectory of passenger 𝑝
contains space-time-sequence arc (𝑖, 𝑗, 𝑡, 𝑡󸀠, 𝑘, 𝑘󸀠); 0
otherwise.

of the end point. If the train runs in the upward direction,
then

L𝑖 (𝑘) = L𝑗 (𝑘󸀠) (5)

Sequence Constraints. According to the definition of a space-
time-sequence, if (𝑖, 𝑡, 𝑘) is an ideal boarding node or train
departure node, then

𝑡 = 𝑡𝑑𝑖𝑠𝑡𝑎𝑡𝑖𝑜𝑛 ,𝑘 (6)

or else 𝑡𝑑𝑖𝑠𝑡𝑎𝑡𝑖𝑜𝑛 ,𝑘−1 ≤ 𝑡 < 𝑡𝑑𝑖𝑠𝑡𝑎𝑡𝑖𝑜𝑛 ,𝑘 (7)

Note that the sequence number of the end node of a
space-time-sequence arc should not be less than that of the
start node. Thus, if (𝑖, 𝑗, 𝑡, 𝑡󸀠, 𝑘, 𝑘󸀠) is a left-behind space-
time-sequence arc, then

𝑘 ≤ 𝑘󸀠 (8)

4.2. Calculation of Weight of Space-Time-Sequence Arc.
According to the objective function, the precise estimation
problem for a passenger’s detailed travel patterns is converted
into a problem of the generation and weight assignments
of a feasible trajectory set. Among a passenger’s travel
activities within the URT system, access, egress, and transfer
are walking activities. Once passengers board a train, their
movements with respect to time are the same as those of train
vehicles and correspond to AVL data. Thus, if (𝑖, 𝑗, 𝑡, 𝑡󸀠, 𝑘, 𝑘󸀠)
is an on-train space-time-sequence arc, 𝑝𝑗,𝑡

󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘
should be

equal to 1.

𝑝
𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘
= 1 (9)

According to Shi [27], the distribution of passengers’
walking times is similar to a normal distribution. In other

words, the distributions of access walking time, egress
walking time, and transfer walking time are also similar
to normal distributions. An access space-time-sequence
arc(𝑖, 𝑗, 𝑡, 𝑡󸀠, 𝑘, 𝑘󸀠) means that the passenger departs node 𝑖
at time 𝑡 and arrives node 𝑗 before time 𝑡󸀠. Thus, 𝑝𝑗,𝑡

󸀠,𝑘󸀠

𝑖,𝑡,𝑘
can

be calculated as follows.

𝑝𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

=
{{{{{{{{{{{{{{{{{{{

∫𝑡󸀠−𝑡
0

1√2𝜋𝜎𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

exp(−(𝑥 − 𝜇𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

)2
2 (𝜎𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

)2 )𝑑𝑥, 𝑘 = 𝑘󸀠
∫𝑡󸀠−𝑡
𝑡󸀠−𝑡−𝐼

𝑗,𝑘󸀠

1√2𝜋𝜎𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

exp(−(𝑥 − 𝜇𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

)2
2 (𝜎𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

)2 )𝑑𝑥, 𝑘 ̸= 𝑘󸀠
(10)

Similarly, if (𝑖, 𝑗, 𝑡, 𝑡󸀠, 𝑘, 𝑘󸀠) is a transfer space-time-
sequence arc, its probability can also be calculated by (10).
Equation (10) can be integrated using characteristics of the
normal distribution, and the result is given as follows.

𝑝𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

=
{{{{{{{{{{{{{{{
Φ(𝑡󸀠 − 𝑡 − 𝜇𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘𝜎𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

) − Φ(−𝜇𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘𝜎𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

) , 𝑘 = 𝑘󸀠
Φ(𝑡󸀠 − 𝑡 − 𝜇𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘𝜎𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

) − Φ(𝑡󸀠 − 𝑡 − 𝐼𝑗,𝑘󸀠 − 𝜇𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘𝜎𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘

) , 𝑘 ̸= 𝑘󸀠
(11)

In (11),Φ(𝑥) is the standard normal distribution function;
its numerical values can be found in the tables.

If (𝑖, 𝑗, 𝑡, 𝑡󸀠, 𝑘, 𝑘󸀠) is a left-behind space-time-sequence
arc, the number of times the passenger is left-behind and can
be calculated as follows.

𝑙
𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘
= 𝑘󸀠 − 𝑘 (12)

Because that passenger can board the first train after their
arrival at a platform during off-peak hours, the number of
times passengers is left-behind and 𝜇𝑖,𝑗 should be zero. Simi-

lar to the on-train space-time-sequence arc, 𝑝𝑗,𝑡
󸀠,𝑘󸀠

𝑖,𝑡,𝑘
should be

equal to 1 during off-peak hours.

𝑝
𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘
= 1 (13)

and

𝑘
󸀠 = 𝑘 (14)

Provided that all passengers in line board the train
following the first-come-first-served principle during peak
hours, the closer the number of left-behinds is to its mean
value, the greater the probability 𝑝𝑗,𝑡

󸀠,𝑘󸀠

𝑖,𝑡,𝑘
is. It is similar

to the progressive distribution. Here, we adopt (15) as its
distribution function.

𝑝
𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘
= 1√2𝜋
𝑒
−(𝑙
𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘
−𝜇𝑖,𝑗)

2/2
(15)



www.manaraa.com

Journal of Advanced Transportation 7

4.3. Estimation of Station Walking-Time Parameters

Estimation of Platform Waiting-Time Parameters. Platform
waiting time is defined as the elapsed time after a passenger’s
arrival at a platform and before the departure time of the
first departing train. During off-peak hours, the capacity of
the transit service supply is greater than traffic demand, and
all passengers can board the first departing train after their
arrival at a platform.The actual boarding nodes are the same
as the ideal boarding nodes in this situation. Additionally,
the platform waiting time should be less than the interval
between the departure times of sequential trains passing
the station. Since the times passengers arrive at a platform
are random, the distribution at the platform is the uniform
distribution.The mean and variance of the platform waiting-
time distribution are given as follows.

𝜇
𝑤
𝑠 = ℎ𝑡𝑠2 (16)

(𝜎𝑤𝑠 )2 = (ℎ𝑡𝑠)2
12

(17)

Estimation of Station Walking-Time Parameters. According
to Section 2, there are three types of walking activities at a
station: access at an origin station, egress at the destination
station, and transfer(s) at transfer station(s). If (𝑖, 𝑗, 𝑡, 𝑡󸀠, 𝑘, 𝑘󸀠)
is an exit space-time-sequence arc, 𝑐𝑗,𝑡

󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘
is equal to the

egress walking time. Thus, it has the same distribution
function.The mean and variance of the time consumption of(𝑖, 𝑗, 𝑡, 𝑡󸀠, 𝑘, 𝑘󸀠) can be calculated as follows.

𝜇
𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘
= 𝜇𝑒𝑠 (18)

(𝜎𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

)2 = (𝜎𝑒𝑠)2 (19)

where 𝑠𝑖 = 𝑠𝑗 = 𝑠, and (𝑗, 𝑡󸀠, 𝑘󸀠) is an exit space-time-
sequence node.

If (𝑖, 𝑗, 𝑡, 𝑡󸀠,𝑘,𝑘󸀠) is an entry space-time-sequence arc
and its time consumption consists of two parts, (i) access
walking time and (ii) platform waiting time, thus, the mean
and variance of the access walking-time distribution can be
calculated by

𝜇
𝑎
𝑠 = 𝜇𝑗,𝑡󸀠 ,𝑘󸀠𝑖,𝑡,𝑘 − 𝜇𝑤𝑠 (20)

(𝜎𝑎𝑠 )2 = (𝜎𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

)2 − (𝜎𝑤𝑠 )2 (21)

where 𝑠𝑖 = 𝑠𝑗 = 𝑠 and (𝑖, 𝑡, 𝑘) is an entry space-time-sequence
node.

Similarly, the parameters of the distribution of transfer
walking times can be calculated as follows.

𝜇
𝑐
𝑠,𝑠󸀠 = 𝜇𝑗,𝑡󸀠 ,𝑘󸀠𝑖,𝑡,𝑘 (22)

(𝜎𝑐𝑠,𝑠󸀠)2 = (𝜎𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

)2 (23)

where 𝑠𝑖 = 𝑠, 𝑠𝑗 = 𝑠󸀠 and 𝑠(𝑛𝑎𝑚𝑒) = 𝑠󸀠(𝑛𝑎𝑚𝑒).
5. Solution Algorithm

Theobjective function presented in Section 4 is a product and
is nonlinear; it is difficult to optimize. This section presents
an algorithm to estimate the maximum space-time-sequence
trajectory for all passengers with given AFC data.

The objective function can be converted to a sum using
properties of the logarithm function.

max ln 𝑧 = ∑
𝑝∈P

∑
(𝑖,𝑗,𝑡,𝑡󸀠,𝑘,𝑘󸀠)∈EW∪EL

𝑦𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘,𝑝

∙ ln𝑝𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘 (24)

By substituting (10)-(12), (14), and (16) into (24) we get

max ln 𝑧
= ∑
𝑝∈P

∑
(𝑖,𝑗,𝑡,𝑡󸀠 ,𝑘,𝑘󸀠)∈EW

𝑦𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘,𝑝

∙ ln(Φ(𝑡󸀠 − 𝑡 − 𝜇𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘𝜎𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘

) − Φ(max {0, 𝑡󸀠 − 𝑡 − 𝐼𝑗,𝑘󸀠} − 𝜇𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘𝜎𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘

)) − ∑
𝑝∈P

∑
(𝑖,𝑗,𝑡,𝑡󸀠 ,𝑘,𝑘󸀠)∈EL

𝑦𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘,𝑝

∙ (𝑙𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

− 𝜇𝑖,𝑗)2 − ∑
𝑝∈𝑃

∑
(𝑖,𝑗,𝑡,𝑡󸀠 ,𝑘,𝑘󸀠)∈EL

ln√2𝜋 (25)

Provided that the mean and variance of a walking space-
time-sequence arc,Φ((𝑡󸀠−𝜇𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘
)/𝜎𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

), andΦ((max{0, 𝑡󸀠−𝑡 − 𝐼𝑗,𝑘󸀠} − 𝜇𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

)/𝜎𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

) are fixed and can be calculated

easily, similarly, (𝑙𝑗,𝑡󸀠,𝑘󸀠
𝑖,𝑡,𝑘

− 𝜇𝑖,𝑗)2 can also be calculated. Thus,
theweights can be calculated for all trajectories. Inverting this
argument, if all passengers’ space-time-sequence trajectories
are given, these trajectories can be used as samples to estimate
these parameters with the maximum-likelihood estimation
algorithm. To solve the station time parameters estimation
problem and a passenger’s trajectory-estimation problem,
an iterative optimization algorithm is proposed in this
paper.

The algorithm assigns a feasible trajectory for all passen-
gers randomly and estimates station time parameters with
MLE. The estimation of passengers’ maximum-likelihood
space-time-sequence trajectories and station time parameters
will not stop until the optimal result is obtained.

Algorithm 1 (iterative optimization algorithm). Input: pas-
sengers’ feasible space-time-sequence trajectory sets

Output: station time parameters and passengers’
maximum-likelihood space-time-sequence trajectories

Step 1 (initialization). Input AFC data andAVL data, initialize
parameters of algorithm. Set (ln 𝑧)0 = 0, 𝜀 = 10, 𝑘 = 1, where
𝑘 is the index of calculation generation.
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Step 2 (feasible space-time-sequence trajectories generation).
Generate a feasible space-time-sequence trajectory set and
select a trajectory randomly and assign it to all passengers.

Step 3 (estimate station parameters using the maximum-
likelihood estimation algorithm). Given the detailed infor-
mation of all passengers’ space-time-sequence trajectories,
a passenger’s time consumption at any station can be cal-
culated. Then, the mean and variance can be estimated
according to (27) and (28).

𝜇𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

= ∑𝑝∈P ∑(𝑖,𝑗,𝑡,𝑡󸀠,𝑘,𝑘󸀠)∈EW 𝑦𝑗,𝑡󸀠,𝑘󸀠
𝑖,𝑡,𝑘,𝑝

∙ 𝑐𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘∑𝑝∈P ∑(𝑖,𝑗,𝑡,𝑡󸀠 ,𝑘,𝑘󸀠)∈EW 𝑦𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘,𝑝

(26)

(𝜎𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

)2

= ∑𝑝∈P ∑(𝑖,𝑗,𝑡,𝑡󸀠,𝑘,𝑘󸀠)∈EW 𝑦𝑗,𝑡󸀠,𝑘󸀠
𝑖,𝑡,𝑘,𝑝

∙ (𝑐𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

− 𝜇𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

)
∑𝑝∈P ∑(𝑖,𝑗,𝑡,𝑡󸀠 ,𝑘,𝑘󸀠)∈EW 𝑦𝑗,𝑡󸀠 ,𝑘󸀠

𝑖,𝑡,𝑘,𝑝

(27)

During peak hours, the mean of left-behind can also
calculated.

𝜇𝑖,𝑗 = ∑𝑝∈P ∑(𝑖,𝑗,𝑡,𝑡󸀠,𝑘,𝑘󸀠)∈EL 𝑦𝑗,𝑡󸀠 ,𝑘󸀠𝑖,𝑡,𝑘,𝑝 ∙ 𝑙𝑗,𝑡󸀠 ,𝑘󸀠𝑖,𝑡,𝑘∑𝑝∈P ∑(𝑖,𝑗,𝑡,𝑡󸀠 ,𝑘,𝑘󸀠)∈EL 𝑦𝑗,𝑡󸀠,𝑘󸀠𝑖,𝑡,𝑘,𝑝 (28)

Step 4 (deviation calculation). Calculate (ln 𝑧)𝑘 according to
(25). If (ln 𝑧)𝑘 − (ln 𝑧)𝑘−1 < 𝜀, then go to Step 6. Otherwise,
set 𝑘 = 𝑘 + 1 and go to Step 5.

Step 5 (passenger’s travel pattern estimation). Assign the
most likely space-time-sequence trajectory for all passengers
by executing the passenger’s travel-patterns estimation algo-
rithm. Then, go to Step 3.

Step 6 (algorithm end). Calculate station time parameters
based on (16)-(23). Output the station time parameters and
all passengers’ space-time-sequence trajectories.

We implemented the following iterative procedure to
solve the problems, as summarized in Figure 3.

As shown in Figure 3, we have extended the Beijing
rail transit network topology by replacing a station with
four types of spatial nodes (entry, exit, platform, and track)
from which we generate the set of feasible space-time-
sequence trajectories using the methodology in [7]. The set
of passengers’ feasible space-time-sequence trajectories is
the basis for solving the station time parameters estimation
problem and the passenger’s space-time-sequence trajectory-
estimation problem. The mean and variance of passengers’
time consumption at a station can be estimated with MLE
once all passengers’ space-time-sequence trajectories are
assigned. Then, the key to the station time parameters esti-
mation problem is the passenger assignment problem. After
estimating station time parameters, all space-time-sequence
arc time-consumption distribution functions are known.The

weights of all space-time-sequence arcs are fixed and can be
calculated. Thus, the passenger’s travel-patterns estimation
problem can be converted into a shortest-path problem. The
passenger’s travel-patterns estimation algorithm is presented
as follows.

Algorithm 2 (passenger’s travel-patterns estimation algo-
rithm). Input: station time parameters

Output: passengers’ space-time-sequence trajectories

Step 1 (initialize algorithm parameters). Set 𝑘 = 1, 𝑛 is the
count of passengers.
Step 2 (weight calculation). Update weights of all space-time-
sequence arcs according to the following equations.

ln𝑝𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

=
{{{{{{{{{{{{{{{{{

−(𝑐𝑗,𝑡󸀠 ,𝑘󸀠𝑖,𝑡,𝑘 − 𝜇𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

)2
2 (𝜎𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

)2 + ln 1√2𝜋𝜎𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

, (𝑖, 𝑗, 𝑡, 𝑡󸀠, 𝑘, 𝑘󸀠) ∈ EW

− (𝑙𝑗,𝑡󸀠 ,𝑘󸀠
𝑖,𝑡,𝑘

− 𝜇𝑖,𝑗)2 , (𝑖, 𝑗, 𝑡, 𝑡󸀠, 𝑘, 𝑘󸀠) ∈ EL

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(29)

Step 3 (estimate a passenger’s maximum-likelihood space-
time-sequence trajectory). Calculate the weight of each feasi-
ble space-time-sequence trajectory following (25) and assign
the shortest path for the 𝑘th passenger.

Step 4 (algorithm loop judgement). If 𝑘 > 𝑛, go to Step 4;
otherwise, go to Step 2.

Step 5 (algorithm end). Output all passengers’ space-time-
sequence trajectories.

6. Case Study

To verify the proposed methodology, the model was tested
on real-world data from the Beijing railway transit network.
We propose an approach to validation that addresses the lack
of actual passengers’ itineraries. The approach is to analyze
the estimation results statistically and compare them with
existing results. A software system has been developed using
C#, Windows Presentation Foundation (WPF) and Human-
computer interaction technology based on the model pro-
posed in this paper.

6.1. Beijing Railway Transit Network. Construction started
on the Beijing railway transit network in 1965, and the first
line began operation on January 15, 1971. By the end of
2016, Beijing railway transit had developed into a large-scale
network, and its average daily passenger traffic was close to
10 million. During this period, the metro operations were
divided into two companies: (i) Beijing Subway and (ii)
Beijing MTR. Figure 4 shows the real-world Beijing railway
transit network topology at the end of 2016.

As shown in Figure 4, there are a total of 17 railway
lines and 338 stations, including 53 transfer stations. Unlike
other railway lines, the airport line, labeled JC in Figure 4, is
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Figure 3: Solution methodology procedure.
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Figure 4: Topology of Beijing rail transit network.

independent; passengers must swipe their smart cards when
they transfer from/to the airport line.

6.2. Input Data Preparation. The case study employs AFC
transaction data and AVL data obtained from Beijing Subway
and Beijing MTR Corporation. Although these data vary

from manufacturer to manufacturer, the basic information
used in this paper was recorded.

An automatic ticketing system was launched in Beijing
railway transit on June 9, 2008. Dozens of types of infor-
mation are recorded and saved to a database. Passengers’
tap-in and tap-out information was extracted, and Table 3
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Table 3: AFC transaction data from Dongwuyuan to Chongwen-
men.

CardID Entry Time Exit Time
15093414604 17:34:00 18:08:16
15094844706 18:09:00 18:43:23
15094957624 18:08:00 18:42:11
15095055101 17:29:00 18:01:21
15094845984 17:47:00 18:17:21
15095014893 17:27:00 17:56:18
15093507376 17:25:00 17:54:17
15093510397 17:43:00 18:12:17
15095109950 18:04:00 18:33:02

shows some AFC data from Dongwuyuan to Chongwenmen
observed during peak hours onMay 9, 2016.The time format
is hh:mm:ss.

Five types of information are extracted directly from the
database.The Card ID is the unique identifier of a smart card
and represents an individual passenger. It is critical to match
tap-in and tap-out records. The time and location of tap-in
and tap-out are recorded by the AFC systemwhen passengers
pass the entry/exit gates and swipe their smart cards.The data
are accurate and record to the nearest second.

AVL data is actual train operation information; arrival
and departure times at each station of all trains are recorded
in detail, and then they are collected by tracking systems or
CBTC, generally in one of two formats within the Beijing
railway transit (see Tables 4(a) and 4(b)).

The software system uses a unified data structure for
trains to analyze passengers’ travel behavior at the network
level and improve computation efficiency.

6.3. Estimation Results and Discussion. The accuracy of the
estimation results is the key measure in evaluating the model
proposed in this paper. Accuracy is evaluated at both the
individual and network levels.

6.3.1. Estimation Results for Station Parameters. Station-time
parameters are the basic attributes that tell the approximate
time consumed, including access, egress, and transferwalking
times for a transfer station. A maximum-likelihood estima-
tion algorithm was developed to estimate these station time
parameters by analyzing passengers’ space-time-sequence
trajectories. Figure 6 shows the distribution of station-time
parameters during off-peak hours and peak hours. The
distributions of access walking time in Dongwuyuan station
during off-peak hours and peak hours are shown in Figures
5(a) and 5(b). Figures 5(c) and 5(d) show the distribution
of egress walking time and the last two figures present the
distribution of transfer walking time.

As shown in Figure 5, the distributions are obviously
similar to a normal distribution. The actual times consumed
are concentrated over a certain range. Table 5(a) compares
the estimated access walking time with a manual survey
result provided by the Beijing Transportation Operations
Coordination Center (TOCC). Tables 5(b) and 5(c) show
comparisons of egress and transfer walking times.

According to Tables 5(a), 5(b), and 5(c), the estimation
results are close to the manual survey results. The relative
deviations between estimation results and manual survey
are less than 5% except for the access walking time of
Dongwuyuan. As the access walking time is approximately 30
seconds, the absolute deviation is only three or four seconds
and is acceptable, although the relative deviation exceeds 5%.

6.3.2. Left-Behind. The distribution of the estimated number
of left-behinds is shown in Figure 6. During off-peak hours,
only approximately two percent of passengers are left-behind,
and the vast majority of passengers board the first train.
These left-behind passengers may have been waiting for a
companion. Most passengers left-behind during peak hours
due to train vehicle capacity constraints miss only one train,
though some passengers miss as many as three.

6.3.3. Passenger Travel Patterns. Aspace-time-sequence indi-
cates a passenger’s travel information in detail. The number
of times the passenger is left-behind and the specific train(s)
taken can be found directly. Figure 7 shows the space-time-
sequence trajectory-estimation result of a passenger whose
Card ID is 15093414604. This passenger passed the Dong-
wuyuan entry gate at 17:34:00 and left fromChongwenmen at
18:08:16. Table 6 shows the station-time parameters estimated
in Sections 6.3.1 and 6.3.2.

As shown in Figure 7, there are theoretically more
than ten feasible space-time-sequence trajectories. Partial
trajectories are given in Table 7.

In Table 7, columns 3-5 indicate the total time consumed
with no left-behinds at the origin, transfer, and destination
stations. The total time consists of two components at both
the origin and transfer stations: the access/transfer and
platformwaiting times. In general, the total time consumed at
the destination station should be the egress time. According
to the estimation, this passenger chose the fourth trajectory
for the journey.

The passenger arrived at platform of Dongwuyuan before
17:35:28, the departure time of train 1S443. He/she did not
leave Dongwuyuan by 1S443 until the departure of the next
train, 1Q445, because of crowding. Similarly, he/she was
left-behind once at Xizhimen and boarded train 322223 for
his/her destination.

6.3.4. Distribution of URT Network Passenger Flow. The
distribution of the URT network passenger flow is one of
most important network characteristics for URT operations.
It reflects the time-dependent travel demand and is the basis
for the transportation plan. Figure 8 shows the distribution of
URT network passenger flow during peak hours.

During peak hours, as shown in Figure 8, the URT
network is crowded, and the maximum train load is up to
140%. The more congested sections are located mainly in
the center of Beijing, consistent with that during off-peak
hours [7]. Table 8 compares the estimated results of section
passenger flow and the results provided by Beijing TOCC for
the top five subway sections during peak hours.

As shown in Table 8, the estimated results are consistent
with the results from TOCC. Compared with off-peak hours,
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Table 4

(a) AVL data of Line 2

Train Num Xizhimen Xuanwumen Chongwenmen
Arrive Time Depart Time Arrive Time Depart Time Arrive Time Depart Time

302108 10:12:30 10:13:30 10:24:31 10:25:01 10:31:07 10:31:52
322109 10:16:00 10:17:00 10:28:01 10:28:31 10:34:37 10:35:22
192110 10:20:30 10:21:30 10:32:31 10:33:01 10:39:07 10:39:52
362111 10:25:00 10:26:00 10:37:01 10:37:31 10:43:37 10:44:22
382112 10:29:30 10:30:30 10:41:31 10:42:01 10:48:07 10:48:52
402113 10:34:00 10:35:00 10:46:01 10:46:31 10:52:37 10:53:22
62114 10:38:30 10:39:30 10:50:31 10:51:01 10:57:07 10:57:52

(b) AVL data of Line 10

Rail Line Train Num Station Arrival Time Departure Time⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
10 2278 Jinsong 17:48:50 17:49:25
10 2278 Shuangjing 17:50:52 17:51:22
10 2278 Guomao 17:53:30 17:54:20⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
10 2302 Liuliqiao 19:44:20 19:45:15
10 2302 Xiju 19:47:06 19:47:51
10 2302 Niwa 19:49:01 19:49:31

Table 5

(a) Dongwuyuan access walking-time parameter comparison table

Survey (s) Estimation (s) Relative deviation
Peak 34 37 8.82%

(b) Chongwenmen egress walking-time parameter comparison table

Survey (s) Estimation (s) Relative deviation
Peak 169 177 4.73%

(c) Transfer walking-time parameter comparison table

Station Transfer
Direction Survey (s) Estimation

(s)
Relative
deviation

Xizhimen Line 4󳨀→ Line 2 219 225 2.74%
XuanwumenLine 4 󳨀→ Line 2 240 229 4.58%

Table 6: Station parameters expectation at each subway station.

Station parameter Expected value
Access time at Dongwuyuan 37 s
Transfer time from Line 4 to Line 2 at Xizhimen 225 s
Egress time from Chongwenmen 169 s
Left-behind at Dongwuyuan 1
Left-behind at Xizhimen 1

the distribution of relatively congested sections during peak
hours is similar. The relatively congested sections mainly
focus on the out-of-Beijing direction and are located around
Central Business Districts (CBD) during off-peak and peak.

The difference is that a large number of passengers get off
work and travel to the suburbs through the URT network
during late peak hours.

7. Conclusion

As the objective of URT service, passenger flow is the basis
for the URT transportation organization. The characteristics
of the passenger flow distribution have a large impact on the
transportation plan and efficiency. To better understand the
composition of passenger flow and its characteristics, we have
developed a data-driven approach to estimate passengers’
travel pattern. A space-time-sequence trajectory model was
constructed based on AFC transaction data and AVL data to
simulate passengers’ travel processes.

An iterative maximum-likelihood estimation algorithm
is presented to estimate the most likely space-time-sequence
trajectory and station time parameters. A space-time-
sequence trajectory indicates a passenger’s travel activities
and time consumed. Additionally, the number of left-behinds
can be calculated by analyzing the relationship between a
passenger’s arrival time at a platform and the train sequence.
The space-time-sequence trajectory is useful in mining
passengers’ path-choice behaviors and further assists URT
operations to better predict the future operations status of the
URT network.

Our future research will focus on two major areas: first,
mining passengers’ travel pattern in cases of emergency and
analyzing the impact of an emergency on passengers’ path
choices and the URT network passenger flow distribution;
second, how to optimize the URT timetable based on passen-
ger travel demand and rescheduling in emergencies.
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Table 7: Detailed information of theoretical feasible space-time-sequence trajectories.

No. Board Train Origin Transfer Destination Left-behind

1 1S443,
422219 88 s 65 s 676 s none

2 1Q445,
162221 88 s 205 s 489 s once at Dongwuyuan

3 1Q445,
022222 88 s 205 s 339 s once each at Dongwuyuan and Xizhimen

4 1Q445,
322223 88 s 355 s 189 s once each at Dongwuyuan and Xizhimen

5 1A447,
322223 88 s 235 s 189 s twice at Dongwuyuan and once at Xizhimen
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Figure 5: Estimation result of distribution of station-time parameters.
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Table 8: Section passenger-flow comparison results.

Section name TOCC Estimate Relative deviation
Xuanwumen - Caishikou 33458 33392 -0.20%
Caishikou – Taoranting 31898 31890 -0.03%
Jintailu – shilipu 31502 31576 0.23%
Hujialou – Jintailu 30171 30287 0.38%
Taoranting – Beijing South 28638 28651 0.03%
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Figure 6: Distribution of number of left-behinds at Dongwuyuan.
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Figure 7: Space-time-sequence trajectory-estimation result.
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Network passenger flow distribution (17:00 - 18:00)
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Figure 8: Distribution of URT network passenger flow during peak hours.

Data Availability

The data used to support the findings of this study have not
been made available because AFC transaction data and AVL
data are recorded during actual operations. These data can
be mined for too much information and relate to passenger
travel privacy as well as traffic safety. Readers can access
the distribution of Beijing URT network passenger flow at
https://map.bjsubway.com/. If necessary, we can process the
data and provide it.
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